ellauri071.html on line 245: Kvaternionit ovat kompleksilukujen nelikomponenttinen laajennus, jossa yhden imaginääriakselin i}">
ellauri071.html on line 252: {\displaystyle i}
ellauri071.html on line 254:
sijaan on käytössä kolme ei-reaalista akselia i}">
ellauri071.html on line 261: {\displaystyle i}
ellauri071.html on line 263:
j}">
ellauri071.html on line 270: {\displaystyle j}
ellauri071.html on line 272:
ja k}">
ellauri071.html on line 279: {\displaystyle k}
ellauri071.html on line 281:
. Kvaternionit voidaan myös ymmärtää reaaliluvun ja kolmiulotteisen vektorin yhdistelmäksi. Kvaternio on muotoa t+xi+yj+zk}">
ellauri071.html on line 297: {\displaystyle t+xi+yj+zk}
ellauri071.html on line 299:
\displaystyle t+xi+yj+zk}">, jossa t}">
ellauri071.html on line 306: {\displaystyle t}
ellauri071.html on line 308:
, x}">
ellauri071.html on line 315: {\displaystyle x}
ellauri071.html on line 317:
, y}">
ellauri071.html on line 324: {\displaystyle y}
ellauri071.html on line 326:
ja z}">
ellauri071.html on line 333: {\displaystyle z}
ellauri071.html on line 335:
ovat reaalilukuja ja i}">
ellauri071.html on line 342: {\displaystyle i}
ellauri071.html on line 344:
, j}">
ellauri071.html on line 351: {\displaystyle j}
ellauri071.html on line 353:
ja k}">
ellauri071.html on line 360: {\displaystyle k}
ellauri071.html on line 364:
i^{2}=j^{2}=k^{2}=ijk=-1\,}">
ellauri071.html on line 398: {\displaystyle i^{2}=j^{2}=k^{2}=ijk=-1\,}
ellauri071.html on line 400:
\displaystyle i^{2}=j^{2}=k^{2}=ijk=-1\,}">
ellauri078.html on line 44: The infinity symbol ( ∞ {\displaystyle \infty } \infty , ∞, or in unicode ∞) is a mathematical symbol representing the concept of infinity. In algebraic geometry, the figure is called a lemniscate.
ellauri374.html on line 134: {\displaystyle \sum _{i\in I}\|T(e_{i})\|_{H}^{2}<+\infty.}
29